On the Characterisation of Mal’tsev and Jónsson-tarski Algebras
نویسنده
چکیده
There are very strong parallels between the properties of Mal’tsev and Jónsson-Tarski algebras, for example in the good behaviour of centrality and in the factorization of direct products. Moreover, the two classes between them include the majority of algebras that actually arise “in nature”. As a contribution to the research programme building a unified theory capable of covering the two classes, along with other instances of good centrality and factorization, the paper presents a common framework for the characterisation of Mal’tsev and Jónsson-Tarski algebras. Mal’tsev algebras are characterized by simplicial identities in the product complex of an algebra. In the dual of a pointed variety, a simplicial object known as the pointed complex is then constructed. The basic simplicial Mal’tsev identity in the pointed complex characterises Jónsson-Tarski algebras. Higherdimensional simplicial Mal’tsev identities in the pointed complex are characteristic of a class of algebras lying properly between Goldie and Jónsson-Tarski algebras.
منابع مشابه
Closedness Properties of Internal Relations I: a Unified Approach to Mal’tsev, Unital and Subtractive Categories
We study closedness properties of internal relations in finitely complete categories, which leads to developing a unified approach to: Mal’tsev categories, in the sense of A.Carboni, J. Lambek and M.C.Pedicchio, that generalize Mal’tsev varieties of universal algebras; unital categories, in the sense of D.Bourn, that generalize pointed Jónsson-Tarski varieties; and subtractive categories, intro...
متن کاملJónsson posets and unary Jónsson algebras
We show that if P is an infinite poset whose proper order ideals have cardinality strictly less than |P |, and κ is a cardinal number strictly less than |P |, then P has a principal order ideal of cardinality at least κ. We apply this result to characterize the possible sizes of unary Jónsson algebras.
متن کاملA Note on Double Central Extensions in Exact Mal’tsev Categories
The characterisation of double central extensions in terms of commutators due to Janelidze (in the case of groups), Gran and Rossi (in the case of Mal’tsev varieties) and Rodelo and Van der Linden (in the case of semi-abelian categories) is shown to be still valid in the context of exact Mal’tsev categories.
متن کاملMoufang symmetry VI. Reductivity and hidden associativity in Mal’tsev algebras
Reductivity in the Ma’tsev algebras is inquired. This property relates the Mal’tsev algebras to the general Lie triple systems. 2000 MSC: 20N05, 17D10
متن کاملA NOTE ON DOUBLE CENTRAL EXTENSIONS IN EXACT MAL’TSEV CATEGORIES dedicated to Francis Borceux on the occasion of his sixtieth birthday
La caractérisation des extensions centrales doubles en termes de commutateurs de Janelidze (dans le cas des groupes) et de Gran et Rossi (dans le cas des variétés de Mal’tsev) est montrée d’être toujours valide dans le contexte des catégories exactes de Mal’tsev avec coégalisateurs. The characterisation of double central extensions in terms of commutators due to Janelidze (in the case of groups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003